nubtrek

Server Error

Server Not Reachable.

This may be due to your internet connection or the nubtrek server is offline.

Thought-Process to Discover Knowledge

Welcome to nubtrek.

Books and other education websites provide "matter-of-fact" knowledge. Instead, nubtrek provides a thought-process to discover knowledge.

In each of the topic, the outline of the thought-process, for that topic, is provided for learners and educators.

Read in the blogs more about the unique learning experience at nubtrek.continue
mathsLimit of a functionCalculating Limits

Limit of defined functions

With an example, calculation of limits for a defined (but discontinuous) function is discussed. The conditions under which a function is defined are illustrated with examples.



click on the content to continue..

Given function `f(x)=color(deepskyblue)(x^2-1)/color(coral)(x-1)`. what is `f(x)|_(x=1)`?limit of defined function

  • Substitute `x=1`
  • `(1-1)/(1-1)`
  • `0/0`
  • all the above
  • all the above

The answer is 'All the above'. The options provide the steps to evaluate `f(1)`.

Given function `f(x)=color(deepskyblue)(x^2-1)/color(coral)(x-1)`. what is left-hand-limit `lim_(x->1-)f(x)`?left hand limit of defined function

  • `2`
  • `2`
  • `0/0`
  • `-delta`
  • `-2`

The answer is '`2`'.

`lim_(x->1-)f(x)`
`quad quad = color(deepskyblue)((1-delta)^2-1)/color(coral)((1-delta)-1)`
`quad quad = color(deepskyblue)(1-2delta+delta^2-1)/color(coral)(1-delta-1)`
`quad quad = color(deepskyblue)(-delta(2-delta)) /color(coral)(-delta)`
`quad quad = 2-delta`
`quad quad = 2` (substituting `delta=0`)

Given function `f(x)=color(deepskyblue)(x^2-1)/color(coral)(x-1)`. what is right-hand-limit `lim_(x->1+)f(x)`?right hand limit of continuous function

  • `2`
  • `0/0`
  • `0/0`
  • `delta`
  • `-2`

The answer is '`2`'.

`lim_(x->1+)f(x)`
`quad quad = color(deepskyblue)((1+delta)^2-1)/color(coral)((1+delta)-1)`
`quad quad = color(deepskyblue)(1+2delta+delta^2-1)/color(coral)(1+delta-1)`
`quad quad = color(deepskyblue)(delta(2+delta)) /color(coral)(delta)`
`quad quad = 2+delta`
`quad quad = 2` (substituting `delta=0`)

Given function `f(x)=color(deepskyblue)(x^2-1)/color(coral)(x-1)`.

 •  `f(1)=0/0` indeterminate value

 •  `lim_(x->1-)f(x) = 2`

 •  `lim_(x->1+)f(x) = 2`
limits of a defined function The function is defined at `x=1`.

When left-hand-limit and right-hand-limit are equal, then limit is defined.
Limit is referred as "limit of the function"

If the left hand and right hand limits are equal then the limit is defined at that input value.

If the function evaluates to indeterminate value and the limit is defined, then the function is defined by the limits.

Limit is defined: If `lim_(x->a-)f(x)` `= lim_(x->a+)f(x)` then the limits are commonly given as `lim_(x->a) f(x)`
Function is defined by Limit: If `f(a) !in RR` and `lim_(x->a-)f(x)` `= lim_(x->a+)f(x)`, then the function is defined by limit at `x=a`.

Solved Exercise Problem:

Find if the function `f(x)=color(deepskyblue)(3x^2-2x-8)/color(coral)(x-2)` is continuous or defined at `x=2`?

  • Both continuous and defined
  • Not defined
  • Not Continuous and Defined
  • Not Continuous and Defined

The answer is 'Not Continuous and Defined'

                            
switch to slide-show version