Server Not Reachable. *This may be due to your internet connection or the nubtrek server is offline.*

Thought-Process to Discover Knowledge

Welcome to **nub****trek**.

Books and other education websites provide "matter-of-fact" knowledge. Instead, nubtrek provides a thought-process to discover knowledge.

In each of the topic, the outline of the thought-process, for that topic, is provided for learners and educators.

Read in the blogs more about the unique learning experience at nubtrek.continue

Books and other education websites provide "matter-of-fact" knowledge. Instead, nubtrek provides a thought-process to discover knowledge.

In each of the topic, the outline of the thought-process, for that topic, is provided for learners and educators.

Read in the blogs more about the unique learning experience at nubtrek.continue

Welcome to *the only place where the essence of "limit of a function" is explained*.

• `0/0` is called as indeterminate value -- meaning a function evaluating to `0/0` can take any value, it could be `0`, or `1`, or `7`, or `oo`, or undefined.

• other forms of indeterminate values are: `oo/oo`, `oo-oo`, `0^0`, `0xx oo`, or `oo^0`

Rigorous arithmetic calculations may result in `0/0`, but the expression may take some other value. The objective of limits is to find that value. The details explained are *revolutionary and provided nowhere else*.

Once that is explained, the topics in limits are covered. *(click for the list of lessons in this topic)*

Understanding limits with Graphs

Welcome to the *astoundingly clear and simple lesson on understanding limits*. The geometrical meaning of left-hand-limit and right-hand-limit are explained with graph of a function.

The function is considered as two constituent functions of numerator and denominator and using the graphs of these functions, the limit is explained.

Based on the understanding of numerator and denominator, the L'Hospital's Rule is explained.