Modulus of product is product of modulus.

*click on the content to continue..*

Given `z_1 = a_1+ib_1` and `z_2 = a_2+ib_2` what is the modulus of product `|z_1 xx z_2|`?

- `|z_1| xx |z_2|`
- `|z_1| xx |z_2|`
- `|z_1| + |z_2| `

The answer is '`|z_1| xx |z_2|`'.

Given `z_1 = a_1+ib_1` and `z_2 = a_2+ib_2`, the modulus of product

`|z_1 xx z_2|`

`quad quad = |a_1a_2-b_1b_2 + i(b_1a_2+a_1b_2)|`

`quad quad = sqrt(a_1^2+b_1^2)sqrt(a_2^2+b_2^2)`

`quad quad = |z_1| xx |z_2|`

• Modulus of product is product of modulus.

**Modulus of Product: ** For complex numbers `z_1, z_2 in CC`

`|z_1 xx z_2| = |z_1| xx |z_2|`

*Solved Exercise Problem: *

Given `z_1 = a_1+ib_1` and `z_2 = a_2+ib_2` what is the modulus of quotient `|z_1 -: z_2|`?

- `|z_1| -: |z_2|`
- `|z_1| -: |z_2|`
- `|z_1| - |z_2| `

The answer is '`|z_1| -: |z_2|`'.

*slide-show version coming soon*